
Telecommun Syst (2012) 51:137–146
DOI 10.1007/s11235-011-9423-6

Mobile agent based framework for mobile ubiquitous application
development

Seungkeun Lee · Kuinam Kim

Published online: 25 March 2011
© Springer Science+Business Media, LLC 2011

Abstract Ubiquitous computing which enabled by the
availability of mobile, heterogeneous devices that supply
context information, is currently not matured by the lack
of programming support for the design and development
of context-aware applications. Especially, ubiquitous com-
puting environment is not static which can be compens-
able dynamically according to need of environment. Mo-
bile agent is a very efficient framework applications can
cooperative in heterogeneous environment. Therefore, we
have developed a mobile agent based framework that sig-
nificantly eases the development of mobile, context-aware
applications. The framework allows developers to fuse data
from disparate sensors, represent application context, and
reason efficiently about context, without the need to write
complex code. An event based communication paradigm
designed specifically for ad-hoc wireless environments is
incorporated, which supports loose coupling between sen-
sors, actuators and application components.

Keywords Mobile agent · Mobile ubiquitous computing

1 Introduction

This Context awareness and mobility are core concepts in
the vision of ubiquitous computing where networks of small

S. Lee (�)
Joah Cooperation AG, Industriestrasse 30, 8302, Kloten,
Switzerland
e-mail: lee@joah.ch

K. Kim
Kyonggi University, 94-6, Yiuidong, Yeongtonggu, Suwon,
Kyonggido 443-760, Republic of Korea
e-mail: harap123@daum.net

computing devices are dispersed in the physical environ-
ment, operating autonomously and independently of cen-
tralized control. Context-aware applications are a large and
important subset of the overall set of ubiquitous computing
applications, and have already demonstrated the advantages
gained from the ability to perceive the surrounding environ-
ment. Such applications however remain difficult to develop
and deploy, with no widely accepted programming model
available. Programmers are often required actuator devices
at a low level in order to develop relatively simple applica-
tions [1–3].

The mobility of devices in the ubiquitous computing en-
vironment also raises challenges in the areas of communi-
cation and interaction due to factors such as dynamically
changing network addresses and system configurations, sus-
ceptibility to disconnection and low bandwidth [4].

The main components of a context-aware application are
a set of sensors for capture of context data, a set of rules
governing behavior according to context and a set of actu-
ators for generating responses. We have developed the sen-
tient object model for the development of context-aware ap-
plications in an ad-hoc mobile environment, which defines
software abstractions for sensors and actuators, and provides
a framework for the specification of production rule driven
behavior. Sentient objects have a number of characteristics
that are important in ubiquitous computing environments:

• Sentience—the ability to perceive the state of the environ-
ment via sensors

• Autonomy—the ability to operate independently of hu-
man control in a decentralised manner

• Proactiveness—the ability to act in anticipation of future
goals or problems.

The framework fulfills the two major goals identified by Dey
and Sohn [5] that are necessary for the successful develop-
ment of ubiquitous, context-aware applications, namely:

mailto:lee@joah.ch
mailto:harap123@daum.net


138 S. Lee, K. Kim

• Applications are easier to design, prototype and test, sup-
porting a faster iterative development process

• Designers and end-users are empowered to build their
own applications A number of other middleware pro-
posals address the challenges of effectively developing
context-aware applications.

Seminal work by Dey and Sohn [5] provided a toolkit which
enabled the integration of context data into applications, but
did not provide mechanisms for performing sensor fusion,
reasoning about context, or dealing with mobility. Context
acquisition and use was often tightly integrated into a sin-
gle application [2], and could not easily be incorporated
into other applications. Other work provided mechanisms
for reasoning about context [1, 6], but still did not provide
a well-defined programming model and did not address the
challenges of mobility. Recent and ongoing work [7–9] pro-
vides programmer support for the development of context-
aware applications, but does not provide the ability to sys-
tematically specify and manage event filtering, sensor fusion
and rule-based inference in a mobile ad-hoc environment, as
our framework does.

2 Common requirements of context aware frameworks

From the functionalities of the frameworks studied above,
we came up with the common set of requirements that any
context aware framework satisfies:

• Sensor technology to capture the contextual information:
Acquire raw contextual information

• Support for event based programming model so as to have
the ability to trigger events when certain context change
is observed.

• A way to communicate the sensed contextual data to other
elements in the environment and a way to interpret the
collected data: provide interpreted context to application.

Support to build context aware applications is provided by
various infrastructures indicated above among which the

two promising supporting infrastructures for our thesis are:
The Context Toolkit and the Java Context Aware Frame-
work. JCAF would have been a better choice for our the-
sis, since it supports an Application Programming Inter-
face (API), which can be used directly to handle contextual
changes and since it is based on deployment in an organi-
zation. However, it is relatively new and is under active de-
velopment. Being a relatively new proposal, JCAF has no
proper documentation as of now. Context toolkit is relatively
well established and the first version is now publicly avail-
able. Hence, modified context toolkit is a better choice for
use in the framework proposed in this thesis.

3 The sentient agent programming model

We provide a programming model, based on the sentient
object model and incorporating the STEAM event service,

Fig. 1 Overview of Framework

Fig. 2 Shared object manager



Mobile agent based framework for mobile ubiquitous application development 139

Fig. 3 Class diagram of Shared
Object Manager

which provides abstractions for the development of mobile,
context-aware applications.

3.1 Programming sensors and actuators

Sensors are developed as software abstractions that pro-
duce STEAM events, whilst actuators are developed as soft-
ware abstractions that consume STEAM events. These soft-
ware components encapsulate and act as wrappers for hard-
ware and software sensors and provide mappings between
specific sensor protocols and proprietary data formats, and
STEAM events. Sensors provide a uniform interface to sen-
sory information through STEAM events, and hide details of
the underlying sensing technologies. Actuators extend from
STEAM consumer entities that export an API for subscrip-
tion management. Actuators consume STEAM events ac-
cording to active subscriptions and filters, and transform the
information contained within these events, to specific hard-
ware or software commands. Actuators subscribe to event
types of interest based on a set of event filters. In addition to
the class file, each sensor and actuator also contains an XML
description file, which contains information about the events
produced or consumed, as well as probabilistic information
regarding the uncertainty of each event. Fig. 4 Communication Manager



140 S. Lee, K. Kim

3.2 Programming sentient objects

Sentient objects are developed using a graphical develop-
ment tool that allows developers to specify relevant sensors
and actuators, define fusion networks, specify context hier-
archies and production rules, without the need to write any
code.

3.2.1 Specifying inputs and outputs

Specification of inputs to the object is done simply through
‘drag and drop’ from libraries which contain XML descrip-
tions of sensors and sentient objects. Each descriptor de-
scribes the name and type of each STEAM event produced
by the sensor or object. Outputs are specified in the same
way, with descriptors available describing the events con-
sumed by the actuator or object. Much of the programming

Fig. 5 Event Notification Module

effort is concentrated in the specification of the logic of the
object.

3.2.2 Specifying contexts

Specification of the context hierarchy is the next step in the
development of an object. The hierarchy is built up by spec-
ifying the attributes of each individual context. The most
important attributes of a context are: (1) The set of events
which are of interest in this context; (2) The set of rules
which are active in the context; (3) The set of other con-
texts to which this context is related (i.e. child contexts) and
may transition to; (4) The conditions under which transition
to another active context occurs.

In effect, a context acts as a composite event filter whilst
it is active, only those events which are defined as being of
interest in that context are delivered to the object. A context
defines the behaviours that are appropriate within the con-
text by specifying the set of production rules that are active,
and consequently evaluated, in each context. The fact that
only a subset of sensor inputs and production rules needs to
be considered for each individual context aids in reducing
the complexity of developing context aware applications.

3.3 Specifying fusion services

Fusion services within sentient objects are defined at the
level of a context, using Bayesian networks. The tool allows
the user to specify a Bayesian network for fusing fragments
of context data on a per-context basis, via an intuitive graph-
ical network builder.

The network is constructed by defining the events of in-
terest and their relationships by adding nodes and arcs in an
interactive manner. The probabilities of all root nodes are
then specified and a conditional probability table (CPT) is

Fig. 6 Develop environment



Mobile agent based framework for mobile ubiquitous application development 141

Fig. 7 An experiment process

constructed for each non root node. These tables capture
prior probabilities of events and rely on the a priori avail-
ability of probability data. This may be determined through
experimental evidence as was done for ultrasonic sensors in
the development of our sentient model car, where the proba-
bility distribution that an arbitrary sensor reading was within
a specified threshold was calculated based on experimental
observation.

3.4 Specifying rules

The complexity of specifying effective rules and knowledge
bases is one of the greatest challenges in context-aware ap-
plication development. Sentient objects make use of an em-
bedded CLIPS inference engine, but CLIPS syntax is com-

plex and not easily assimilated by the majority of develop-
ers. We attempt to make knowledge capture more accessible
to domain experts by providing a high level, graphical rule
builder, allowing the definition of application behaviors at
the level of a context, and hiding the complexities of CLIPS
syntax from the user.

4 Design of framework

In this section, we design a mobile agent based framework
for mobile ubiquitous application. The framework is com-
posed by hierarchy management for multi-layered mobile
agent, coordination management and event notification.



142 S. Lee, K. Kim

4.1 Overview of framework

Mobile agent platform provides a lifecycle (Creation/Inter-
pretation/Execution/ Destroy) of mobile agent. Additionally,
it must provide access control to resource in system. We ex-
tend this general mobile agent platform to perform coordi-
nation among mobile ubiquitous applications. Figure 1 is a
overview of framework in this paper.

We adopt IBM Aglet2.02 as common mobile agent plat-
form that operates on Java Virtual Machine and add 3 com-
ponents to build the framework. Aglet provides a lifecycle of
mobile agent and event notification model based on socket.

4.2 Shared objects and access control

Mobile ubiquitous agent can access common objects with
hierarchical role based coordination model and the common
object and access control manager control access right and
roles. This manager defines objects that will be used in ubiq-
uitous applications as object group unit based on role rela-
tional template in group. Common object management ca
provides ease of management of objects defined as group
unit and acquisition of group information. All objects has
class information and identifier of instance. Working agent
group can register object group that will be used in work-

ing agent group and use the information of object. In ad-
dition, it can register and delete of objects dynamically ac-
cording to necessary. Shared object manager is composed as
Object Group Manager, Object Group Factory, Concurrent

Fig. 8 Agent information before event registration

Fig. 9 Event registration



Mobile agent based framework for mobile ubiquitous application development 143

Fig. 10 Agent information after
event registration

Controller and Notification Module. Figure 2 is a design of
shared object manager.

Object Group Manager is charged of a lifecycle of ob-
ject and has an interface for communication with Access
Controller. Object Group Factory maintains all information
of object group. Notify module send a notification to agent
group whenever it detects changed state of common object.
Figure 3 is a class diagram of Shared Object Manager.

4.3 Communication Manager

Communication Manager provides a communication chan-
nel among agents using multicasting method. This is com-
posed of Local Communicator and Event Distributor. Lo-
cal Communicator is charged of communication among mo-
bile agents that are act a mission behavior. Event Distributor
manages a communication between local communicator.

4.3.1 Local Communicator

Local Communicator manages a registration/deletion of
events from agent. To notify and receive events to/from
event distributor, event notification module and message
board. Notification module support synchronized commu-
nication and Message board support asynchronous com-
munication. Request Handler is an interface for agent to
communicate with Local Communicator. If agent wants to
communicate with other agent using asynchronous method,

Message Board is used for that. This is similar with general
indirected communication.

4.3.2 Event Notification Module

This is composed of Event Sender and Event Receiver.
Event Sender contains Register for registration/deletion of
event and Notifier to send event notifier events. And, event
receiver generates event for proper agent. Figure 5 is Event
Notification Module.

Event Sender is composed of Register for event registra-
tion and Notifier. Register is acted by request through re-
quest handler. This is, agents can receive interesting events
not all events by registration of needed events. Registered
events are stored event table.

5 Experiment

To validate of this framework, we develop a simple informa-
tion searching system using this mobile agent based ubiqui-
tous application. Figure 6 is a overview of the development
environment for this system.

We checked below points to validate of this framework.

• Can agent register interesting events?
• Can framework provide a proper multicasting?
• Can framework provide a reliable asynchronous commu-

nication?



144 S. Lee, K. Kim

Fig. 11 Agent information after
event registration

Figure 7 describes an experiment process for a prototype
application.

This application is composed of five mobile applica-
tions (MasterAgent, ServiceAgent, WorkerAgent_1, Work-
erAgent_2, WorkerAgent_3). MasterAgent want to get in-
formation from environment, so it send message to Ser-
vice Agent to start a work. ServicAgent asks the Work-
erAgent to gather context information. WorkerAgent_1 is
moving to place 165.246.31.209, WorkerAgent_2 is mov-
ing to 165.246.31.205 and WorkerAgent_3 is moving to
165.246.31.220 for getting a context information. Each
agent registers interesting events to be notified.

Figure 8 shows an agent information table before event
registration.

Figure 9 shows that agents register events on site. Af-
ter event registration, an agent information table is up-
dated like Fig. 10. ServiceAgent asks multicat when it re-
quests a proper work to WorkerAgent. Therefore, each re-

sult from WorkerAgent must be merged an object. This
result is added event table when ServiceAgent send mes-
sage. If all results are arrived, merged date is sent to Ser-
viceAgent.

ServiceAgent requests a multicast process when it want
to send a message to WorkerAgent. So, this framework
needs to send a result as combined objects to ServiceAgent.
When ServiceAgent sends a message, Event Notifier regis-
ters an information of ServiceAgent on event table, and add
an result from each agent on table. If all results are regis-
tered on table, it makes an result object with all result and
reply to ServiceAgent.

Figure 11 is a sequence diagram to show a process of
sending/receiving of multicast messages from SerivceAgent.
This process is done on event receiver module in local com-
municator.

In Fig. 11, ServiceAgent request a multicast process to
WorkerAgnets and get a result as just an object. This re-



Mobile agent based framework for mobile ubiquitous application development 145

Fig. 12 Asynchronous
communication with message
board

Fig. 13 Comparison of # of
Event

sult object is transferred to MasterAgent from ServiceAgent.
ServiceAgent also can provide an asynchronous communi-
cation methods with message board like Fig. 12.

Site 165.246.31.215 shows message is transferred to
event notification muddle after an interval time automati-
cally. In this experiment, we can check this framework can
support a synchronous and asynchronous communication
between multi agents.

6 Evaluation

In this section, we evaluate this framework can support a
cooperation work among multiagents.

We can assume a size of total event

m × k × n

n : # of Agent / m : # of Site / k : # of Movement of Agent.
This means that size of transferring events increase by

number of site, agent and movement of agent. But, this
framework can reduce event size like below.

m × (m − 1)

This shows our system can reduce event size that is defined
only by number of site. That is number of agent and move-
ment of agent do not affect a size of event. So, our frame-
work can support developer can implement a large scaled
application without concerning of event size because they
can neglect number of agent and movement.

And, this framework can support agent can register event
on site that it want to get. So, number of transferred event
will be reduced that agent need check and proceed.

Assume n is # of agent, k is # of event. # of event will be
like below.

n × k

And, if agent can register event that agent want to get, # of
event will be like below.

n × e(e ≤ k)

In our experiment, # of transferred event will be reduced
almost 34% of previous system. Figure 13 shows event
based communication can reduce a frequency of event.

In this experiment, we can know this framework can re-
duce a transferred event and provide an efficient framework



146 S. Lee, K. Kim

to developers that they can implement a large scale applica-
tion without concerning of size of agent and movement.

7 Conclusion

In this paper, we have presented a framework, based on the
sentient object model, for developing context-aware appli-
cations in a mobile, ad-hoc environment. Our framework
provides a systematic approach to context-aware application
development, including the ability to fuse context fragments
and deal with uncertainty in a probabilistic manner, the abil-
ity to represent context within the application, and the ability
to easily compose rules to reason efficiently about context.
This functionality is offered in a tool that is easily accessible
to a wide range of developers, permitting the rapid design
and development of applications, based on sentient objects,
for ubiquitous computing environments.

We have successfully applied our framework to the de-
velopment of a number of proof-of-concept applications, in-
cluding a simple sentient model car application that drives
and obeys traffic signals autonomously.

References

1. Strang, T. (2003). Service interoperability in ubiquitous computing
environments. Ph.D. Thesis, Ludwig-Maximilians University.

2. Szumel, L., LeBrun, J., & Ownes, J. D. (2005). Towards a mobile
agent framework for sensor networks. In Proceedings of the second
IEEE workshop on embedded networked sensors (pp. 79–88).

3. López de Ipiña, D., Mendonça, P. R. S., & Hopper, A. (2002). Per-
sonal and Ubiquitous Computing, 6(3), 206–219.

4. Forman, G. H., & Zahorjan, J. (1994). The challenges of mobile
computing. IEEE Computer, 27(6).

5. Dey, A.K., & Sohn, T. (2003). Supporting end user programming
of context-aware applications. In Conference on Human Factors in
Computing Systems (CHI) Workshop on Perspectives in End User
Development, Fort Lauderdale, FL, April, 5-10, 2003

6. Park, N., Lee, K., & Kim, H. (2005). A middleware for supporting
context-aware services in mobile and ubiquitous environment. In
Proceedings of the international conference on mobile business (pp.
694–697).

7. Lee, S., Lim, K., & Lee, J. (2005). The design of webservices
framework support ontology based dynamic service composition.
In LNCS: Vol. 3689. Proceedings of the second Asia information
retrieval symposium (pp. 721–726). Berlin: Springer.

8. Yan, L., & Sere, K. (2004). A formalism for context-aware mobile
computing. In Proceedings of the third international workshop on
parallel and distributed computing, third international symposium
on/algorithms, models and tools for parallel computing on hetero-
geneous networks (pp. 14–21).

9. Lee, S. (2007). Context modeling and inference system for hetero-
geneous context aware service. In Lecture notes in computer sci-
ence: Vol. 4558 (pp. 413–422). Berlin: Springer.

Seungkeun Lee the Computer Sci-
ence & Engineering degree and the
M.Sc. and Ph.D. degrees from Inha
University, South Korea in 1996,
1998 and 2006 respectively.
He was a PostDoc researcher in IN-
RIA, France from 2006 and 2007.
Since 2008 he has been at Joah Co-
operation AG, Switzerland, where
he is a managing director and CIO.
Hie research interests include ubiq-
uitous computing environment, con-
text awareness and home network
system.

Kuinam Kim received his B.S. de-
gree of Mathematics, University of
Kansas in 1989. He received his
M.S. degree of Statistics and Ph.D.
degree of Industrial Engineering
from Colorado State University. He
is currently a professor in the Indus-
trial Security Department, Kyonggi
University, Korea. His research in-
terests include industrial security.


	Mobile agent based framework for mobile ubiquitous application development
	Abstract
	Introduction
	Common requirements of context aware frameworks
	The sentient agent programming model
	Programming sensors and actuators
	Programming sentient objects
	Specifying inputs and outputs
	Specifying contexts

	Specifying fusion services
	Specifying rules

	Design of framework
	Overview of framework
	Shared objects and access control
	Communication Manager
	Local Communicator
	Event Notification Module


	Experiment
	Evaluation
	Conclusion
	References


